Sains Malaysiana 54(7)(2025): 1859-1873

http://doi.org/10.17576/jsm-2025-5407-18

 

Comparing Various Methods of Forecasting Stock Index Prices in a Shock-Affected Market: Based on Data Covering the COVID-19 Pandemic

(Membandingkan Pelbagai Kaedah Ramalan Harga Indeks Saham dalam Pasaran Terjejas Kejutan: Berdasarkan Data Meliputi Pandemik COVID-19)

 

REVATHI GANESAN1 & R. NUR-FIRYAL1,2,*

 

1Department of Mathematical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2Center for Modelling and Data Analysis (DELTA), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

 

Diserahkan: 12 November 2024/Diterima: 28 April 2025

 

Abstract

The recent years have been economically challenging, with financial markets worldwide facing turmoil. From late 2020 to mid-2022, global economies were heavily impacted by the COVID-19 pandemic due to the implementation of lockdowns and austere quarantine measures that crippled world trade. As the pandemic abated with increased vaccination rates, global economic growth was expected to return to normalcy. However, commodities (especially oil), exchange rates, and stocks remain greatly devalued, continuing to restrict financial progress. The primary goal is to identify the most effective models for predicting the impact of international trade during COVID-19 pandemic. Accurate stock index forecasting is crucial in such uncertain economic conditions. Using Malaysia, Indonesia, and Singapore as the research targets, this study compares time series linear regression (TSLR), Bayesian regression, and support vector regression (SVR) in predicting major stock indices during pre- and post-vaccination periods. The models are evaluated based on root mean square error (RMSE), mean absolute error (MAE), and adjusted R² to determine their effectiveness. Results show that Bayesian regression outperforms other models in the pre-vaccination period due to its ability to incorporate prior information, whereas SVR performs better in the post-vaccination period, capturing complex market dynamics more effectively. These findings suggest that Bayesian regression is particularly useful during high-uncertainty periods, while SVR is better suited for stable market conditions. This method should be utilized extensively in future research with other machine learning methods to enhance forecasting accuracy, while additional macroeconomic variables such as inflation, interest rates, and geopolitical factors should also be considered. Furthermore, the findings of this study, shows that by incorporating Bayesian regression and machine learning can provide valuable insights for policymakers, investors, and financial analysts in navigating financial risks during economic crises.

Keywords: Bayesian regression; COVID-19; SVR; TSLR; vaccination

 

Abstrak

Ekonomi global pada beberapa tahun kebelakangan telah menghadapi cabaran ekonomi yang kritikal. Ekonomi global menghadapi kesan yang teruk akibat pandemik COVID-19 disebabkan oleh pelaksanaan sekatan dan kuarantin yang ketat yang merencatkan perdagangan dunia dari penghujung Disember 2020 hingga pertengahan 2022. Pertumbuhan ekonomi global dijangka kembali pulih dengan peningkatan kadar vaksinasi semasa pandemik. Walau bagaimanapun, nilai komoditi (terutamanya minyak), kadar pertukaran mata wang dan saham kekal merosot, yang terus mengehadkan kemajuan ekonomi. Model regresi telah menunjukkan prestasi ramalan yang baik dalam meramalkan harga indeks saham, tetapi objektif utama adalah untuk mengenal pasti model yang paling berkesan untuk menghadapi krisis ekonomi ini. Dengan menggunakan indeks dari Malaysia, Indonesia dan Singapura sebagai sasaran kajian, kajian ini bertujuan untuk membandingkan ketepatan ramalan model regresi linear siri masa, regresi Bayesian dan regresi vektor sokongan (SVR) untuk tempoh pra- dan pasca-vaksinasi bagi menentukan prestasi terbaik berdasarkan punca min ralat kuasa dua (RMSE), ralat min kuasa dua (MAE) dan nilai terlaras R2. Model regresi Bayes dan SVR didapati berprestasi baik kerana kedua-duanya membenarkan anggaran parameter berdasarkan maklumat terdahulu, manakala kaedah klasik hanya boleh menggunakan data sedia ada. Model regresi Bayes dikenal pasti sebagai model yang paling berkesan dalam kajian ini kerana ia menunjukkan prestasi yang baik dalam data ujian. Kaedah ini harus digunakan secara meluas dalam penyelidikan masa depan dengan kaedah pembelajaran mesin yang lain untuk meningkatkan ketepatan ramalan dan faktor makroekonomi lain seperti inflasi, kadar faedah serta faktor geopolitik juga boleh dikaji.

Kata kunci: COVID-19; regresi Bayes; regresi linear siri masa; regresi vektor sokongan; vaksinasi

 

RUJUKAN

Al-Mousawi, Z.F.S. & Al-Ghalibi, K.S.H. 2023. Analysis of the relationship between crude oil prices and economic performance indicators in Iraq for the period 2004-2021. Russian Law Journal XI(12s).

Aziz, M.I.A., Barawi, M.H. & Shahiri, H. 2022. Is facebook PROPHET superior than hybrid ARIMA model to forecast crude oil price? Sains Malaysiana51(8): 2633-2643.

Baig, U., Darukhanawalla, B.H. & Khan, Z.S. 2020. Deal with the fallout economic disorder in South Asian countries from COVID-19. Journal of Social Sciences and Humanities 59(2): 117-134.

Baldwin, J.R., Pingault, J.B., Schoeler, T., Sallis, H.M. & Munafò, M.R. 2022. Protecting against researcher bias in secondary data analysis: Challenges and potential solutions. European Journal of Epidemiology 37(1): 1-10.

Behera, J., Pasayat, A.K. & Behera, H. 2022. COVID-19 vaccination effect on stock market and death rate in India. Asia-Pacific Financial Markets 29(4): 651-673.

Benashvili, G. 2020. Pandemic impacts on the international economy. Globalization & Business 10: 192-197.

Bharath, K., Bhandari, G., Mehta, S. & Gupta, S. 2023. Commodity and stock price prediction using ML time series regression, LSTM. International Journal of Advanced Research in Science, Communication and Technology 3(1): 270-272.

Cen, X. 2022. Prediction on the price of technology stock and COVID-19 based on multiple linear regression. BCP Business & Management 23: 910-915.

Chen, S. 2020. Forecasting daily stock market return with multiple linear regression. Mathematics Senior Capstone Papers. 19. https://digitalcommons.latech.edu/mathematics-senior-capstone-papers/19

Chen, X., Guo, Y. & Song, Y. 2024. Multiple time scales investor sentiment impact the stock market index fluctuation: From margin trading business perspective. The North American Journal of Economics and Finance 69(PA): 102027.

Cortes, C. & Vapnik, V. 1995. Support-vector networks. Machine Learning 20(3): 273-297.

Fatima, S., Sohail, F. & Sajid, Y. 2023. An examination of impact of gold and oil prices on the stock markets indices during COVID-19. International Journal of Financial Engineeringhttps://doi.org/10.1142/S2424786323500111

Gholamy, A., Kreinovich, V. & Kosheleva, O. 2018. Why 70/30 or 80/20 relation between training and testing sets: A pedagogical explanation. International Journal of Financial Engineering 11(2): 105-111.

Hairuddin, H.B.M. & Nur-Firyal, R. 2022. Relationship between oil, gold and Malaysian stock market during COVID-19 movement control order using quantile regression and time series. Sains Malaysiana 51(7): 2315-2327.

Hassan, S., Jati, M.K.K. & Abidin, N.Z. 2023. The impact of COVID-19 on the Malaysia stock market: Finance sector. International Journal of Advanced Research in Economics and Finance 4(4): 120-127.

Herlina, M., Mafruhat, A.Y., Kurniati, E., Wildan, W. & Salsabila, H.G. 2022. The stock market reaction to COVID-19 vaccination in ASEAN. F1000Res. 11: 363.

Hu, H. 2025. A global comparative study of financial market anomalies. Proceedings of the 3rd International Conference on Financial Technology and Business Analysis. DOI: 10.54254/2754-1169/153/2024.19468

Hu, M., Tang, Z., Xie, X. & Jiang, M. 2022. Stock prediction and analysis based on support vector machine. Frontiers in Business, Economics and Management 5(2): 98-101.

Ji, X., Bu, N., Zheng, C., Xiao, H., Liu, C., Chen, X. & Wang, K. 2024. Stock market reaction to the COVID-19 pandemic: An event study. Portuguese Economic Journal 23(1): 167-186.

Jiet, M.M., Verma, P., Kamble, A. & Puri, C. 2024. A review on Bayesian methods for uncertainty quantification in machine learning models enhancing predictive accuracy and model interpretability. 2024 Second International Conference on Intelligent Cyber Physical Systems and Internet of Things (ICoICI). pp. 1671-1675.

Joseph, E., Mishra, A. & Rabiu, I. 2019. Forecast on close stock market prediction using support vector machine (SVM). International Journal of Engineering Research & Technology (IJERT) 8(02): 37-43.

Kabir, M.R., Bhadra, D., Ridoy, M. & Milanova, M. 2025. LSTM–Transformer-based robust hybrid deep learning model for financial time series forecasting. Sci. 7(1): 7.

Kucher, O., Kurov, A. & Wolfe, M.H. 2023. A shot in the arm: The effect of COVID-19 vaccine news on financial and commodity markets. Financial Review 58(3): 575-596.

Li, J.F. & Lin, Z.C. 2024. An application of multi-factor model on anomaly in China stock market. International Journal of Religion 5(7): 849-856.

Li, S., Wang, Y., Zhang, Z. & Zhu, Y. 2022. Research on the factors affecting stock price volatility. 7th International Conference on Financial Innovation and Economic Development (ICFIED 2022). pp. 2884-2889.

Mgalla, M. 2023. The impact of the COVID-19 pandemic on the stock market returns: Evidence from the Chinese stock market. Proceedings of the 2023 6th International Conference on Computers in Management and Business. pp. 51-57.

Muth, C., Oravecz, Z. & Gabry, J. 2018. User-friendly Bayesian regression modeling: A tutorial with rstanarm and shinystan. The Quantitative Methods for Psychology 14(2): 99-119.

Nirmala, B. & Pundareeka Vittala, K.R. 2023. A study on interaction between global exchanges and Indian capital market. International Journal of Advanced Research in Science, Communication and Technology 3(8): 819-823.

Oanh, T.T.K. 2022. The impact of COVID-19 vaccination on stock market: Is there any difference between developed and developing countries? Heliyon 8(9): e10718.

Rawat, V., Singh, K. & Sahu, Y. 2023. Reliance stock market analysis with RBF kernel using support vector machine. 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES). pp. 939-943.

Razali, N.S. & Nur-Firyal, R. 2021. Predicting index price based on the COVID-19 cases and deaths. Sains Malaysiana 50(9): 2833-2846.

Serkan, U., Çömlekçi, I. & Ali, Ö. 2022. Stock market reaction to COVID-19 vaccination rate: International study. Konuralp Medical Journal 14(S1): 183-191.

Singh, R. 2025. The role of social media sentiment in predicting stock returns: An econometric and text analytics approach. International Journal for Multidisciplinary Research 7(1): IJFMR250135498.

Smola, A.J. & Schölkopf, B. 2004. A tutorial on support vector regression. Statistics and Computing 14(3): 199-222.

Tabash, M.I., Babar, Z., Sheikh, U.A., Khan, A.A. & Anagreh, S. 2022. The linkage between oil price, stock market indices, and exchange rate before, during, and after COVID-19: Empirical insights of Pakistan. Cogent Economics & Finance 10(1): 2129366.

Tan, X., Ma, S., Wang, X., Zhao, Y., Wang, Z. & Xiang, L. 2022. The dynamic impact of COVID-19 pandemic on stock returns: A TVP-VAR-SV estimation for G7 countries. Frontiers in Public Health 10: 859647.

Wong, H.T. 2022. The impact of real exchange rates on real stock prices. Journal of Economics, Finance and Administrative Science 27(54): 262-276.

Yang, S. 2025. Pandemic, policy, and markets: Insights and learning from COVID-19’s impact on global stock behavior. Empirical Economics 68: 555-583.

Yunianto, I., Haryanto, T., Mutoffar, M.M., Fadhillah, Y. & Putria, N.E. 2023. Comparison of stock price predictions using support vector regression and recurrent neural network methods. 2023 International Conference on Computer Science, Information Technology and Engineering (ICCoSITE). pp. 927-932.

Zhang, C. 2023. The impact of COVID-19 on the international financial market. Highlights in Business, Economics and Management 19: 547-551.

Zhang, D., Hu, M. & Ji, Q. 2020. Financial markets under the global pandemic of COVID-19. Finance Research Letters 36: 101528.

Zhao, X. 2021. Application of Bayesian regression model in financial stock market forecasting. 2nd International Conference on Management, Economy and Law (ICMEL 2021). pp. 140-144.

Zouaghia, Z., Kodia, Z. & Ben Said, L. 2024. Predicting the stock market prices using a machine learning-based framework during crisis periods. Multimedia Tools and Applications. https://doi.org/10.1007/s11042-024-20270-3

 

*Pengarang untuk surat-menyurat; email: nurfiryal@ukm.edu.my

 

 

 

 

 

 

 

           

sebelumnya